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Introduction
Prediction of three-dimensional, rotating flows is important for turbomachinery
design, and the study of oceans and the earth’s atmosphere (geophysical flows).
Computational fluid dynamics (CFD) is emerging as a popular predictive
technique, with many applications in these areas. Generally, when computing
rotating flows, the co-ordinate system angular velocity ω is chosen so that Ω ≥
ω≥ 0 (e.g. [1-3]), where Ω is a system boundary angular velocity. Here the effect
of ω, on predictions, is illustrated with three, cylindrical polar co-ordinate (r, θ,
z) examples. Two extremes in choices of ω are used: ω = 0 and ω = Ω.
Geophysical flows[4,5] and those found in certain cylindrical turbomachinery
cavities[6,7] are complex, unsteady and non-axisymmetric (∂q/∂θ ≠ 0, where q =
u, p, T, ρ and µ, and u is a velocity vector, p pressure, T temperature, ρ density
and µ dynamic viscosity). Predicting these complex flows can be challenging to
the numerical modeller. Attention must be paid to numerical precision and other
discretization aspects.
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Nomenclature
a, b = inner and outer radii
cp = specific heat
g = acceleration due to earth’s gravity
k = thermal conductivity
L = r – a = radial distance measured from a; or

characteristic length
n = normal to a surface; or coefficient
P = static pressure
p = reduced static pressure
q = general variable
∆q = change in general variable
r, θ, z = radial, tangential and axial co-

ordinates respectively
S = source term
s = width of fluid enclosure
T = temperature
T′ = T/Tmax = dimensionless temperature
t = time
t′ = Ωt = dimensionless time
∆t = time step

∆t′ = Ω∆t = dimensionless time step
u = velocity vector
u, v, w = radial, tangential and axial velocity

components, respectively
W = bulk average axial velocity
α0, α1 = relaxation parameters
µ = dynamic viscosity
ρ = density
Ω = angular velocity of enclosure
ω = angular velocity of co-ordinate

system
τ = stream function
τ′ = τρ/µ = dimensionless stream function
Γ = diffusion coefficient

Subscripts
q = pertaining to general variable
max = maximum value
s = pertaining to surface
i, o = pertaining to inlet and outlet values

respectively
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Numerical precision
For geophysical flows, the hydrostatic pressure, ρ g z (where g is the
acceleration due to gravity and z depth) can be large, relative to flow driving
pressure differences. To see the detrimental effect of this hydrostatic pressure
gradient, it is helpful to consider the linear inviscid momentum equations in a
polar (r, θ) co-ordinate system. These are given below:

(1)

where p is some reduced pressure, discussed later, and u and v radial and
tangential velocity components relative to a co-ordinate system rotating at ω.
As can be seen from equation (1), prediction of r, θ plane velocity components
depends on accurate modelling of pressure gradients. Consequently, a
hydrostatically reduced pressure is used when predicting this type of flow[4,5].
Without this, axisymmetric solutions can result and so clearly, numerical
precision is important. When solving for v, higher numerical precision is also
gained if ω is chosen so that, on average, v is small. However, in turbomachinery,
where rotating surfaces are often close to stationary surfaces[2] the choice of ω,
to minimize v, is not always obvious.

Numerical dissipation
For relatively high Reynolds number flow solutions, a CFD practice is to raise
viscosity levels artificially. This increases dissipation/diffusion, smoothing
dependent variable variations. The increased dissipation is sometimes
described as false[8] or numerical[9]. 

Numerous convective term discretizations have been developed to try to
reduce numerical dissipation and maintain stability. A review of many of these,
applied to turbulent flows, is given by Leschziner[10]. Studies on the
performance of schemes of this type have been made by workers such as Huang
et al.[11], Patel and Markatos[12], Vanka[13] and Smith and Hutton[14]. It is not
clear from these investigations which method is best. This is especially the case
since none of them were applied to rotating flows. Considering just the
tangential flow components, the HYBRID and CONDIF schemes of
Spalding[15] and Runchal[16], respectively introduce numerical dissipation
when relative local cell Peclet (Pe = ρ v L/Γ, where Γ is a diffusion coefficient
and L a control volume characteristic length) numbers become greater than 2.
For Pe ≤ 2 these schemes use non-dissipative central differencing. Setting ω to
minimize the average value of v, and hence Pe produces less numerical
dissipation and higher accuracy. As can be seen from this discussion, co-
ordinate system angular velocity is related to numerical precision, dissipation
and consequently solution accuracy.

Example details
To illustrate the effect of ω, unsteady, non-isothermal, three-dimensional flow
examples relevant to turbine engines and the earth’s atmosphere are chosen.
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Example I is the flow in an idealized cavity, rotating at Ω, with an axial
throughflow of air (see Figure 1). This geometry, shown in Figure 1a, is used by
Iacovides and Chew[17] and Farthing et al.[7] to study fluid flow in modern gas
turbine aero engine high pressure compressor spool cavities. The cavity
consists of two pierced discs of outer radius b and inner radius a, connected by
a cylindrical shroud of width s. Experiments by Farthing et al. show the 
flow, for this configuration (see Figure 1b), can consist of a radial fluid 
arm, emanating from the axial throughflow air, flanked by a cyclone and
anticyclone. A separation zone, where no axial throughflow entered, was also
observed. 

Example II is the flow in an annulus, of length s, with an outer radius of b and
inner a, shown in Figure 2. The earth’s acceleration due to gravity g, acts
parallel to the axis of rotation. There is a temperature difference between the
inner and outer cylinders. This simple configuration for studying atmospheric
flows was proposed by Thomson in 1892 and is still used (see [4,18]). A typical
annulus flow structure, consisting of a jet flanked by cyclones and anticyclones,
is shown in Figure 2b.

Example III is the heat transport in a hydrodynamic journal bearing with an
orbiting shaft of radius a, shown in Figure 3. The orbit is circular, having an
angular velocity Ω equal to that of the shaft. The bearing has an outer radius b
and width s. Importantly, the orbit results in the same point on the shaft being
closest to the bearing and hence receiving most heating. As observed by de
Jongh and Morton[19], and analytically demonstrated Keogh and Morton[20],
this can cause a significant diametrical shaft temperature gradient, thermal
bending and eventual gas turbine engine failure.

Figure 1.
Rotating cavity with an

axial throughflow:
(a) geometry and

boundary conditions
(r – z plane); (b) flow

structure (r – θ plane)
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Numerical method
Governing equations
The momentum and energy equations can be written in the common general
form:

(2)

where q is either a velocity component or temperature, Sq a source term
containing products and gradients of variables, Γq a diffusion coefficient, t time
and u a velocity vector. The exact form of the operators and source terms used

Figure 2.
Rotating annulus:
(a) geometry and
boundary conditions
(r – z plane); (b) flow
structure (r – θ plane)
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Figure 3.
Hydrodynamic journal
bearing with an orbiting
shaft: (a) geometry and
boundary conditions
(r – z plane);
(b) geometry, boundary
conditions, and hot and
cold regions (r – θ plane)
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in equation (2) are given by Tucker and Keogh[21]. The continuity equation can
be written as:

(3)

In Example III, the fluid (oil) cannot withstand negative pressure and cavitates,
producing an oil and gas mixture. Where cavitation occurs (p < 0 N/m2, gauge),
harmonic means of ρ and Γq, based on the radially averaged fractions of oil and
gas are taken. The fraction of oil q(θ, z, t) in the cavitated region is calculated,
from conservation of mass considerations, using

(4)

where L(θ, t) is the radial distance between the bearing inner surface and shaft.
Full details of this cavitation model are given by Tucker and Keogh[21].

Solution of governing equations
The solution of equations (2)-(4) is based on the staggered grid technique
described by Patankar[8]. A reduced pressure field

(5)

is solved for with the SIMPLEC algorithm of Van Doormaal and Raithby[22],
where n = 1 for Example II and n = 0 for all others. The HYBRID, CONDIF and
central difference schemes, discussed in the introduction, are used as convective
term treatments. For Examples I and III, an implicit time scheme is used, but for
Example II a second order trapezoidal time integration, described by Tucker
and Long[5], is used.

Coupling between tangential and radial momentum equations is improved
by adding the following term to Su in the discretized form of equation (2)

(6)

where ∆u is the difference in u between successive iterations, and α0 and α1
relaxation parameters. When α1 = 1 the term is identical to that proposed by
Gosman et al.[23]. This coupling technique is preferred to the source term
decomposition proposed by Jang and Acharya[24], which produced cpu time
increases relative to solutions without any source term modification.
Discretized equations are solved using a TDMA solver. In Example I,
convergence is accelerated using a non-linear multigrid algorithm described by
Tucker[25].

Convergence is assessed using rms changes, where
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(7)

and ∆q is the difference in q between successive iterations. In Examples I and II,
each time step is taken as converged when the rms change, for all variables, is
less than 2.5 × 10–5. For the multiphase flow, Example III, a value of 1 × 10–4 is
used.

The programme described has been validated for a wide range of complex,
three dimensional, time dependent, non-isothermal, multiphase, moving
boundary and conjugate, rotating flow cases. Much of this work is described in
detail by Tucker[25], Tucker and Keogh[21,26] and Long and Tucker[27]. In
most instances pleasing agreement is found with validation data.

Boundary conditions
Boundary conditions, identified in Figures 1-3, are summarized in Table I. The
subscripts i, o and s are used to indicate inlet, outlet and surface, boundary
conditions; and n is used to define a surface normal. For Example I, Ti = 293 K,
po = 1.03 × 105; and for r ≥ b, Ts = 293 K, and a < r < b, Ts = 382-89 r/b. In
Example II, at r = a, Ts = 295 K and when r = b, Ts = 299 K. For Example III, pi
≈ 1.35 × 105 N/m2, Ti = 50°C and Ts, in boundary condition B6, is a solution
variable.

Numerical parameter settings
The number of grid nodes in the fluid region, relaxation factors, dimensionless
time steps ∆t′ = Ω∆t and approximate computing times, for each time step, are
summarized in Table II. The computing times are for a SPARC Center 2000 with
four 40 MHz processors, and the required storage is between 10 and 20Mb.

For Example III, the number of grid nodes in the solid bearing are the same
as for the fluid region (see Table II). For the shaft a 29 × 9 × 40 (z, r, θ) grid is
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Table I.
Numerical boundary
conditions
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used. Grids are refined at boundaries using geometric expansions. For the fluid,
established correlations are used to ensure two to three grid nodes are
committed to boundary layers. Time steps are made sufficiently small to avoid
the need for under relaxation. Predictions by Long and Tucker[27], Tucker and
Long[5] and Tucker and Keogh[21,26], show the parameters in Table II, give (for
the illustrative purposes of this paper) more than acceptable grid and time step
independence of solutions.

Physical dimensions
The characteristic dimensions a, b and s, and rotating surface angular velocities
are summarized in Table III.

In Example III, the shaft length is 0.45m, the orbit diameter 0.0357mm and the
orbit centre 0.0398mm from the bearing centre, giving L(θ, t)max ≈ 0.031mm.
Also, the diametrically opposite fluid inlets have an angular extent of 9° and an
axial length of 0.0275m. For Examples I to III the working fluids are air, a
water/glycerol mixture and oil respectively. Properties are given in the
Appendix.

Form of results presentation
All contour plots are presented in the midaxial r – θ plane. For Examples I and
II contours are of a dimensionless stream function

(8)

Velocity components are related to τ ′ by the following relationships

(9)

Axial Radial Tangential Computer
Example nodes nodes nodes α0 α1 ∆t′ time(s)

I 17 21 40 2 2 0.85 300
II 28 22 60 0 0 0.1 250
III 9 5 40 10 1 0.015 100

Table II.
Numerical parameter

details

Example a (m) b (m) s (m) Ω (rad/s)

I 0.0108 0.108 0.0288 17.0168
II 0.025 0.08 0.14 1
III 0.05 0.1 0.055 367

Table III.
Characteristic

dimensions and angular
velocities
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Despite the flow being three dimensional, this two dimensional stream function
definition is revealing and illustrates the point to be made here. For Example III,
contours of the dimensionless temperature

(10)

are used, where Tmax is a maximum temperature.

Discussion of results
For Examples I, II and III the Peclet numbers associated with the tangential co-
ordinate direction/energy equation, in a stationary co-ordinate system (ω = 0),
are on average approximately (assuming solid body rotation, which is true to
within 2 per cent) 300, 1,500, and 3,000 respectively. For ω = 0, to eliminate
numerical dissipation (making Pe < 2) from HYBRID and CONDIF solutions,
would require 6,000, 30,000 and 60,000 tangential grid nodes, for Examples I, II
and III respectively. As can be seen, all HYBRID and CONDIF solutions
presented here with ω = 0 will have numerical dissipation. 

For Example I, the variation of τ′, at t′ ≈ 350, using the HYBRID scheme, is
shown in Figure 4. Figures 4a and b show the predicted flow for ω = Ω (a
rotating co-ordinate system) and ω = 0 respectively. In Figure 4a,
cyclone/anticyclone regions, a radial arm and evidence of the separation zone
identified by Farthing et al. (cf. Figure 1b) can be seen. For ω= 0 (Figure 4b) the
solution is axisymmetric (∂q/∂θ = 0). This axisymmetric solution still results
when the CONDIF and central difference schemes are used. Since the central
difference scheme is not numerically dissipative and CONDIF not highly
dissipative, numerical precision, rather than dissipation, is causing the
erroneous axisymmetric prediction. 

Figure 5 illustrates the variation of τ ′, for Example II, at t′ ≈ 1,000 using the
HYBRID scheme. Figures 5a and 5b show the predicted flow for ω= Ω and ω=

Figure 4.
Variation of τ′, for
Example I, at t′ ≈ 350,
using HYBRID scheme:
(a) ω = Ω and (b) ω = 0
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0, respectively. The flow shown in Figure 5a has the characteristics observed in
Hignett et al.’s experiments (cf. Figure 2b) for the same condition. There are
three cyclone/anticyclone pairs between which a fast moving jet passes.
Comparisons (see [5]) with velocity measurements of Hignett et al. show
pleasing agreement. The hydrostatic pressure distribution (ρ g z) is large
relative to flow driving pressure differences. Owing to the limited computer
precision, the reduced pressure defined by equation (5), must be solved for,
otherwise ∂q/∂θ = 0. The prediction must also be made with ω= Ω; since if ω=
0 errors result (see Figure 5b). For ω= 0, the central difference scheme, although
producing a significant accuracy loss with some pointwise oscillations, gives a
solution having the features observed by Hignett et al. This suggests the major
error in Figure 5b when ω= 0 is due to numerical dissipation and not precision.

Figure 6 shows the variation of T′ for Example III (hydrodynamic journal
bearing) involving the HYBRID scheme. Figure 6a, with ω = Ω, clearly shows

Figure 5.
Variation of τ′, for

Example II, at t′ ≈ 1,000,
using HYBRID scheme:
(a) ω = Ω and (b) ω = 0

Figure 6.
Variation of T′, for

Example III, involving
HYBRID scheme:

(a) ω = Ω and (b) ω = 0

13407gb1  25/11/97 11:05 am  Page 655



HFF
7,7

656

that in the shaft ∂q/∂θ > 0, which is consistent with the observations of de Jongh
and Morton[19] and Keogh and Morton[20]. However, as shown in Figure 6b,
when ω = 0, ∂T/∂θ = 0. With ω = 0, Pe is too high to gain converged central
difference solutions. However, numerical experiments, reducing the tangential
grid spacing ∆θ, and hence numerical dissipation, gave ∂T/∂θ > 0 suggesting
that, again, for ω = 0 and high Peclet numbers, numerical dissipation is the
most significant cause of error. This is to be expected, since the shaft
temperature field is governed essentially by a conduction of heat equation
(Ω∂T/∂θ = ΓT∇ 2T ); the solution of which is unlikely to be greatly influenced by
numerical precision.

As can be seen, for design engineering, careful consideration should be given
to the value of ω. For the examples presented, where all surfaces have the same
angular velocity, ω = Ω gave the greatest accuracy, relative to ω = 0. For other
configurations, the choice of ω is not clear. In certain aero engine cavities with
stationary and rotating discs ∂q/∂θ > 0 (see [6]). For these cavities, the choice of
ω, to minimize v (increasing numerical precision) and Pe (reducing numerical
dissipation), is not obvious. Perhaps the average angular velocity of the two
discs (ω = Ω/2) would give acceptable accuracy. For hydrodynamic journal
bearings, similar to Example III, Tucker and Keogh[21] solve the stationary
bearing/fluid and rotating shaft regions with ω = 0 and ω = Ω respectively.
Using this sliding grid strategy, numerical precision is kept to a maximum, with
Peclet numbers and hence dissipation to a minimum. The technique has the
complexity of matching two different co-ordinate systems but offers potential.

Conclusions
The influence of numerical precision and dissipation has been illustrated using
three, non-isothermal, unsteady, three-dimensional cylindrical rotating flow
examples. Example I was the flow in a rotating cavity with an axial
throughflow of air. The flow for this configuration is representative of that
found in the high pressure compressor spool of a modern gas turbine aero
engine. Example II was the flow in an annulus, where the earth’s acceleration
due to gravity acts parallel to the rotational axis. This configuration is used for
the study of atmospheric flow mechanisms. Example III was the heat transport
in a hydrodynamic journal bearing with an orbiting shaft.

For Example II, it was noted that relatively high hydrostatic pressures could
reduce numerical precision causing incorrect axisymmetric predictions. For all
examples it was noted that numerical precision increases and dissipation
decreases when the co-ordinate system angular velocity ω is chosen to
minimize relative tangential velocity.

Governing equations were solved using a staggered grid technique, utilizing
the SIMPLEC pressure correction algorithm along with HYBRID, CONDIF and
central difference convective term treatments. For Examples I and III an implicit
time scheme was used, but for Example II a second order trapezoidal scheme
was implemented. In Example III the fluid cavitated. Where cavitation occurred
harmonic means of fluid and gas properties were used. Results were presented
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in the form of contour plots in mid-axial r – θ, planes for ω= 0 (a stationary co-
ordinate system) and ω = Ω (a co-ordinate system rotating at the enclosure
angular velocity Ω). The Peclet numbers associated with the tangential co-
ordinate direction increased from Examples I to III.

When ω = Ω, all predictions agreed with experimental observations.
However, for Example I, with, on average, the lowest tangential Peclet numbers,
when ω = 0, poor numerical precision caused an erroneous axisymmetric
prediction. For Example II, where Peclet numbers are approximately a factor of
five higher, when ω = 0, HYBRID scheme numerical dissipation resulted in an
erroneous axisymmetric prediction. Similarly, for Example III, with the highest
Peclet numbers, ω = 0 again gave an erroneous axisymmetric solution, which
computations suggest is due to numerical dissipation. 

As can be seen, careful consideration should be given to the choice of ω.
Clearly, for the examples presented, ω = Ω is best; but for other rotating
systems the choice is not clear and further research is required.
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Appendix
Fluid and solid properties, for Examples I-III, are summarized in Table AI. For Example III, the
thermal conductivity, density and specific heat of the solid shaft and bearing are 50 W/mK, 7,850
kg/m3 and 460 J/kg K respectively.
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Table AI.
Fluid properties
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